Elementary physics formulae

A list of elementary physics formulae commonly appearing in high-school and college introductory physics courses. The list consists primarily of formulas concerning mechanics, showing relations between matter, energy, motion, and force in Euclidean space, under the action of Newtonian mechanics.

Contents

Meanings of the symbols

a\,: acceleration

A\,: area or amplitude

E\,: energy

F\,: force

\sum F: net force

f_k\,: kinetic friction force

f_s\,: static friction force

g\,: acceleration due to gravity

J\,: Impulse

KE\,: kinetic energy

m\,: mass

\mu_k\,: coefficient of kinetic friction

\mu_s\,: coefficient of static friction

N\,: Normal force to a surface

\nu \,: Frequency

\vec{p}: Momentum

P\,: Power

Q\,: heat or flowrate

r\,: radius

\vec{s}\,: Distance traveled

T\,: Period, Temperature

t\,: time

\theta\,: Angle (see annotations next to each individual formula for details)

U_g\,: gravitational potential energy

V\,: volume

V_{df}\,: volume of displaced fluid

v_f\,: initial velocity

Vo: final velocity

x_f\,: final position

x_i\,: initial position

Dynamics

Like kinematics, dynamics deal with motion, but take into consideration force and mass.

{\sum F} = ma\,\ -- Newton's second law
N = mg\cos \theta\, (\theta\, is the angle between the supporting surface and the vertical)
f_k = {\mu_k}N\,\ (object moving relative to surface)
f_s = {\mu_s}N\,\ (object not moving relative to surface)

Work, energy and power

Work, energy, and power describes an objects ability to affect nature.

 W = \int \vec{F} \cdot d\vec{s} -- definition of mechanical work
 W = \Delta {KE}\,\!
 W = -\Delta {U}\,\!
 U_g = mgh \,\!
 E = KE %2B U \,\!
 KE = \frac{1}{2}{mv^2}\,\!
 P = \frac{dE}{dt} = \int \vec{F}\cdot \vec{v} \,\!
 P_{avg} = \frac{\Delta E}{\Delta t}\,\!

Simple Harmonic Motion

These are mechanics formulae that deal with simple harmonic motion.

 F = -kx\,\! (k\, is the spring constant) -- Hooke's law
 T_{spring} = (1/2\pi)\sqrt{\frac{m}{k}}\,\!
 \nu = \frac{1}{T}\,\!
 U_s = \frac{1}{2}kx^2\,\! (k\, is the spring constant)
 v_{maxspring} = x\sqrt{\frac{k}{m}}\,\!
 T_{pendulum} = 2\pi\sqrt{\frac{L}{g}}\,\! (for a simple pendulum)

Momentum

Momentum is the amount of mass moving, in classical mechanics.

 \vec{p} = m\vec{v} \,\! -- definition of momentum
 J = \int F \,dt -- definition of impulse
 J = \Delta p \,\!
 m_1\vec{v_1} %2B m_2\vec{v_2} = m_1\vec{v_1'} %2B m_2\vec{v_2'} \,\! -- conservation of momentum
 \frac{1}{2}m_1v_1^2 %2B \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1'^2 %2B \frac{1}{2}m_2v_2'^2 \,\! (Note: this is only true for elastic collisions)

Uniform circular Motion and Gravitation

An object moving along a circular path at constant speed is in uniform circular motion. In this section, a_c, F_c, et cetera, stand for centripetal acceleration and force, respectively.

 a_c = \frac{v^2}{r} = \frac{4\pi^2r}{t^2}\,\!
 F_c = \frac{mv^2}{r}\,\!
 F_g = G\frac{m_1m_2}{r^2}\,\!
 a_{gravity} = G\frac{m_{planet}}{r^2}\,\!
 v_{satellite} = \sqrt{\frac{Gm_{planet}}{R}}
 U_{gravitational} = G\frac{m_1m_2}{r}
 KE_{satellite} = G\frac{m_sm_{planet}}{2R}
 E_{satellite} = -G\frac{m_sm_{planet}}{2R}
 \frac{T_1^2}{a_1^3} = \frac{T_2^2}{a_2^3}

Thermodynamics

Thermodynamics deal with the energy, motion, and entropy of microscopic particles.

 Q = mc \Delta T \,\!
 \Delta L = L_i \alpha \Delta T \,\!
 \Delta V = V_i \beta \Delta T \,\!
 PV = nRT \,\!
 \frac{P_iV_i}{T_i} = \frac{P_fV_f}{T_f} \,\!
 \Delta U = \Delta Q %2B \Delta T \,\!
 e = 1-\frac{\Delta Q_{out}}{\Delta Q_{in}}   \,\!

Rotational Motion

\boldsymbol \tau=rF \sin \theta

Fluids

 F_{buoyancy} = \rho g V_{df}\,
 p = p_{atmospheric} %2B \rho g h\,
 p = \frac{F}{a}\,\!
 Q = Av\,\!
 P %2B \rho gh %2B \frac{1}{2} \rho v^2 = k
 pV = k
 \frac{P}{T}=k

External links